1/29

I |t, Very Thin Client

| | t/ Request N
Aj AX onuri:ut Display Application
Response]
Prof. Cesare Pautasso
http:/ /www.pautasso.info
cesare.pautasso@usi.ch Client/Server
@pautasso Request
Display Application
Response
Web application Architecture
Rich Client
Request -

Display Application

g Response

Client Server Backend

9/29

Request General Architecture
Web Browser Web Server

Response Client Request s
: ! erver
Displ . .
.' - . Isplay Application Resoonse Application i
Application Application | | File System P

©2014 Cesare Pautasso

Rich vs. Thin Client

Rich Client
= Applications runs on the client (may use the server for storage)

= Platform Examples:
= Windows, MacOS/X
= Eclipse RCP/Java

= Software needs to be deployed on the client

= Zero latency

= Complete control, native access to the client platform

Thin Client

Application runs on the server, client only perform Ul tasks

Examples:
= Dumb Terminals

= Web 1.0 Applications

Zero deployment/upgrade costs

Cannot (yet) work offline: sensitive to network failures
Limited control, sandboxed access to the client platform

Client/Server App Structure
app.js

package.json

models

public/css
public/images
public/js
public/views/*.js
routes

views/*.dust

public contains static assets downloaded and executed by
the browser

What about security?
Request

Web Browser Web Server
Response

Web servers should not ever run
any code sent by a Web browser

Web browsers use a sandbox (secure virtual machine)
to run code downloaded from a Web server

Interconnect

How to connect the client with the server?

» Send user commands and input data as HTTP
requests from the client to the server

How to connect the server with the client?

= Pull: Fetch and refresh output data
= Push: Notify client about state changes

Web Browser

PULL

Web Server

—
o

PUSH

Web 1.0 Architecture

Web Browser

Page 1 Click on link Web Server

<a href=

Application

<form action=

A new page must be loaded
for every interaction

Web 1.0 Architecture - Problems

= Ul not Responsive
o The entire Ul must be refreshed for every interaction, even if
only parts of it need to be updated
o The browser is blocked until the new page is downloaded from
the server

= Server unnecessarily busy rendering Web pages in HTML
when it could be just sending JSON and offload the rendering
to the browser

Web 2.0 Architecture

Web Browser

Page 1
<onclick>

<onsubmit>
<onkeypress>
<onmouse*>

KeyPress

18/29

Web Server

Application

User interactions are decoupled
from client/server interactions

Advantages

When the user interacts with the application we send a JSON/XML
request to the server and receive a JSON/XML response back.

The HTML rendering is done on the client

JSON is faster, smaller, cheaper to encode, send and decode

compared with XML/HTML

Clients do not have to download the entire data but can fetch the

data they need when they need it

29

Problem

= Since the whole application runs in the same
page:

o Back button, navigation history broken
o Needs special handling of the "Ul state" of the application

= HTTP connections are expensive:

o Do not poll the server too often
o Browsers limit the number of parallel connections to the same
server

21/29

History Navigation

?history.pushState(state, "title", URI);
history.replaceState(state, "title", URI);

Write a (new) entry in the browser history
(associate URI with Ul state)

window.onpopstate = function(event) {

//history state changed, synchronize the UI:
document.location;
document.location.hash; //#URI fragment
event.state //UI state object

};

React to navigation along the history (back/forward)

history.back();
history.forward();

Programmatically navigate along the history

AJAX Synchronous Interaction

AJAX combines different technologies: Web Browser Web Server

= HTML5 and CSS in the display
= Dynamic display and interaction with DOM
= Data interchange and manipulation using

YPMEAXSET (JSON) .
: : The user waits for the server to process each
= Asynchronous data retrieval with
request
XMLHttpRequest

= Javascript binding everything together

Asynchronous Interaction

Web Browser Web Server

Ul AJAX

The Ul thread is never blocked since server
interactions run in the background

XMLHttpRequest (GET, Synch)

function GET(url) {
var r = new XMLHttpRequest();
r.open("GET", url, false);
r.send(null);
//this will continue after the response has arrived
if (r.status == 200)
return r.responseText;
else
//handle error

false = synchronous

responseText contains
the JSON string to be
parsed

XMLHttpRequest (GET, Asynch)

function GET(url, callback) {
var r = new XMLHttpRequest();
r.open("GET", url, true);
r.onreadystatechange = function() {
if (r.readyState == 4) {

true = asynchronous

if (r.status == 200) r:adyst,a,tf, d
uninitialize
callback(r.responseText); 1 opened
else 2 sent
//handle error 3 receiving
} 4 complete
}
r.send(null);

//this will continue immediately

}

XMLHttpRequest (POST, Asynch)

function POST(url, params, callback) {
var r = new XMLHttpRequest();
r.open("POST", url, true);
r.onreadystatechange = function() {
if (r.readyState == 4) {
if (r.status == 200)
callback(r.responseText);

}

r.setRequestHeader("Content-Type",
"application/x-www-form-urlencoded");

r.send(params);

//this will continue immediately

}

References

Gottfried Vossen, Stephan Hagemann, Unleashing Web 2.0 - From Concepts to Creativity,
Morgan Kaufmann, 2007

Paul Graham,
, September 2001.

Adam Bosworth,

, Jan 2007

Jesse James Garrett,

, Feb 2005
Tim O'Reilly,

, Sept 2005

