
REST

The Architectural Style of the Web

Prof. Cesare Pautasso

cesare.pautasso@usi.ch

http://www.pautasso.info

@pautasso

1 / 27

REpresentational State Transfer

REST defines the architectural style of the Web

Four design principles explain the success and the scalability

of the HTTP protocol

1. Resource Identification through URI

2. Uniform Interface for all resources

3. Multiple representations of the same

resource

4. Hyperlinks indicate resource relationships

and valid state transitions for dynamic protocol

description and discovery

2 / 27

©2014 Cesare Pautasso

URI tell a story

How do we find something on the Internet?

Where is the host serving the information?

How do we communicate with the host?

What is the protocol?

Which port?

Do we need a user/password to login?

In which folder is it located?

Which “file” should we download?

What is the format?

3 / 27

URI example

Start your remote file transfer client, connect to

ftp.usi.ch using the ftp protocol on port 21, login using

your local account and password, go to my public folder

root/public and then change to the videos sub-folder and

download a copy of the introduction.avi file.

ftp://user:pass@ftp.usi.ch/root/public/videos/introduction.avi

4 / 27

©2014 Cesare Pautasso

Uniform Resource Identifier
Internet Standard for resource naming and identification

(originally from 1994, revised until 2005)

http://tools.ietf.org/html/rfc3986

AuthorityURI Scheme Path

https://www.google.ch/search?q=rest&start=10#1

Query Fragment

URIs cannot have arbitrary length (4Kb)

#Fragments are not seen by the server

5 / 27

URI Design Tips
Keep URIs short

Prefer Nouns to Verbs

Once published, do not change URIs

Avoid leaking implementation details (.php, .aspx) into URIs

7 / 27

Parametric URIs
http://map.com/search/Lugano/Parking

Prefer positional encoding

http://map.com/search?where=Lugano&what=Parking

Key-value encoding (useful for optional parameters)

8 / 27

Uniform Interface

HTTP Method Safe Idempotent

POST Create a sub resource (Perform an action) ? ?

GET Retrieve the current state of the resource YES YES

PUT Create or update the state of a resource NO YES

DELETE Clear a resource (invalidate its URI) NO YES

Safe = no side effects: the resource state on the server remains
unchanged if the same request is repeated
Idempotent = regardless of how many times a given method is
invoked, the end result is the same
Retry on Failure: If safe/idempotent requests fail, simply repeat
them (simplified exception handling).

9 / 27

POST vs. GET

GET will return the
current state of the
resource. The result may
change every time

GET is a read-only operation.
It can be repeated without affecting the state of
the resource (idempotent) and can be cached.
POST is a read-write operation and may change the state of the
resource and provoke side effects on the server.

10 / 27

Resources are created by
many concurrent clients

POST vs. PUT

What is the right way of creating
resources and to initialize their state?

PUT /resource/{id}

201 Created

POST /resource

301 Moved Permanently

Location: /resource/{id}

Problem: How to ensure resource {id} is unique?
Solution 1: let the client choose a unique id (GUID)

Solution 2: let the server compute the unique id
Problem: Duplicate resource instances may be created if requests
are repeated due to unreliable communication

11 / 27

Representations

Resources may have multiple representations

Resource representations are controlled with
meta-data (HTTP Headers)

Website in English, Italian, German, French
A picture in PNG, JPG, GIF format
Some content in HTML, JSON or XML format

Negotiation of understood content types
(Accept, Content-Type)
Caching of representations that did not change
(If-Modified-Since)
Compression to save bandwidth
(Accept-Encoding, Content-Encoding)

12 / 27

Hyperlinks

Where to store hyperlinks?

Hyperlinks are the edges of the Web graph, linking a pair of nodes

(URI)

Hyperlinks connect and help to discover related resources

In REST, hyperlinks are used to correctly traverse the state of a

Web application. They point to the next states from the current one.

S DLink
1. In the source resource representation

2. In the destination resource representation

3. Independently of the two resources

13 / 27

Hypermedia

Problem: How to discover the URIs of a potentially infinite

and dynamically changing set of resources?

Solution: Resource Representations contain

links to other resources

R
P

S

R
Link P

Link S

Representation

Resource

Related Resources

14 / 27

Discovery by Referral
Clients can use a service to dynamically lookup and discover other
services
Any resource can refer clients to any other resource (decentralized)
Links can be embedded and found in any hypermedia
representation format

15 / 27

/R /S

Link S

GET /R

200 OK

GET /S

200 OK

16 / 27

REST API Design Process
1. Identify resources to be exposed as services (e.g., photoalbum

images, book catalog, purchase order, open bugs, blog entries, polls

and votes)

2. Model relationships (e.g., containment, reference, state

transitions) between resources with hyperlinks that can be followed

to get more details (or perform state transitions)

3. Define URIs to address the resources

4. Understand what it means to do a GET, POST, PUT, DELETE for

each resource (and whether it is allowed or not)

5. Design, document and standardize resource representations

(media types)

17 / 27

GET PUT POST DELETE

/loan ✓ ✓ ✓ ✓

/balance ✓ ✗ ✗ ✗

/user ✓ ✓ ✓ ✗

/book ✓ ✓ ✓ ✓

/order ✓ ? ✓ ✗

18 / 27

Simple Doodle API Example

1. Resources: Polls and Votes
2. Relationships: Containment
3. URIs embed IDs of "child" instance resources
4. POST on the container creates new child
resources
5. PUT/DELETE for updating and removing
child resources

20 / 27

GET PUT POST DELETE

/poll ✓ ✗ ✓ ✗

/poll/{id} ✓ ✓ ✗ ✓

/poll/{id}/vote ✓ ✗ ✓ ✗

/poll/{id}/vote/{id} ✓ ✓ ✗ ✓

21 / 27

Creating a poll
POST /poll

<options>A,B,C</options>

201 Created

Location: /poll/42

Reading a poll
GET /poll/42

200 OK

<options>A,B,C</options>

<votes href="/vote"/>

/poll/42
/poll/42/vote

/poll 22 / 27

Cast a vote
POST /poll/42/vote

<name>C. Pautasso</name>

<choice>B</choice>

201 Created

Location: /poll/42/vote/1

GET /poll/42

200 OK

<options>A,B,C</options>

<votes href="/vote">

 <vote id="1">

 <name>C. Pautasso</name>

 <choice>B</choice>

 </vote>

</votes>

/poll/42
/poll/42/vote
/poll/42/vote/1

/poll 23 / 27

Update a vote
PUT /poll/42/vote/1

<name>C. Pautasso</name>

<choice>C</choice>

200 OK

GET /poll/42

200 OK

<options>A,B,C</options>

<votes href="/vote">

 <vote id="1">

 <name>C. Pautasso</name>

 <choice>C</choice>
 </vote>

</votes>

/poll/42
/poll/42/vote
/poll/42/vote/1

/poll 24 / 27

Remove a poll
DELETE /poll/42

200 OK

Poll is deleted
GET /poll/42

404 Not Found

/poll/42
/poll/42/vote
/poll/42/vote/1

/poll 25 / 27

References
Tim Berners-Lee, Weaving the Web: The Original Design and Ultimate Destiny of the World
Wide Web, Collins, Nov.2000

IETF, HTTP/1.1 Standard, RFC2616, June 1999

Roy Fielding,

,
University of California, Irvine, 2000

Jacob Nielsen, ,
1999
Leonard Richardson, Sam Ruby, RESTful Web Services, O’Reilly, May 2007, ISBN 0-596-
52926-0
Jim Webber, Savas Parastatidis, Ian Robinson, REST in Practice: Hypermedia and Systems
Architecture, O'Reilly, 2010
Thomas Erl, Benjamin Carlyle, Cesare Pautasso, Raj Balasubramanian, SOA with REST:
Principles, Patterns & Constraints for Building Enterprise Solutions with REST, Prentice
Hall, 2012

http://www.ietf.org/rfc/rfc2616.txt
(http://www.ietf.org/rfc/rfc2616.txt)

Architectural Styles and the Design of Network-based
Software Architectures
(http://roy.gbiv.com/pubs/dissertation/fielding_dissertation.pdf)

URI are UI (http://www.nngroup.com/articles/url-as-ui/)

26 / 27

