Component Interfaces

Prof. Cesare Pautasso

cesare.pautasso@usi.ch

Design Advice

Keep it simple

o Do One Thing and do it well

o Do not surprise clients

Keep it as small as possible but not smaller
o When in doubt leave it out

o You can always add more later

Maximize information hiding

o API First

o Avoid leakage: implementation should not impact interface
Names Matter

o Avoid cryptic acronyms

o Use names consistently

Keep it consistent

o Naming Conventions

o Argument Ordering

o Return values
o Error Handling

Follow the conventions of the underlying platform
Document Everything

o Classes, Methods, Parameters

o Include Correct Usage Examples

o Quality of Documentation critical for success
Make it easy to learn and easy to use

o without having to read too much documentation

Where to find APIs?

Operating Systems

Programming Languages

Standard libraries of any language runtime

Programming Language Runtimes

Hardware Access » C#include <stdlib.h>

= User Interfaces = Java Platform API (SE, EE)
= Databases = |ibstdc++
= Web and Cloud Services = Python Standard Library

= NET Framework class library

Operating Systems
p g dY Hardware Access

= Win16, , Winé64

= POSIX Abstractions to program any kind of hardware device
= Cocoa (0S/X) = Graphics (, WebGL, OpenCL, CUDA)

= android.os = Network (NDIS)

Printers (CUPS)
Device Drivers (WDF, 1/0 Kit)

User Interfaces Web Services

Widgets, Gadgets, Controls Remote access through standardized protocols:
= Tcl/Tk, Qt, GTK+ = SOAP/WSDL Services
= Java Swing, AWT, SWT = REST/Hypermedia Services
= Windows MFC, WPF = JSON-RPC/HTTP Services

= JavaScript HTML5 APIs
J P > Examples: Google, Amazon WS, Facebook Graph,

Twitter Firehose, Salesforce

Databases

Standardized database access

= |DBC
= ODBC
= PHP PDO

Only one chance...

...1o get the design right:

Application Programming Interface

Programming Language (and Standard Library)

External Data Model: o File/Document Format
o Database Schema

o Wire/Message Representation Format
Once the APl becomes public, it is out of your hands
and it will be very expensive to change!

APl Evolution

Once in the API, keep it there forever

o Never add something you do not intend to keep forever
o Easier to add than to remove

Keep changes backwards and forwards compatible
Make sure you explicit version all changes (including
documentation) pointing out incompatibilities

= Publish o0.x versions of an API before freezing it to get

early feedback from users

= Rename a component if its APl has changed too much
So you can start the redesign from scratch without
breaking old clients

APl Compatibility

= Backwards compatibility: Client APl
new version of APl compatible 1.0 —@—1.0
with old client backwards
1.0 -
= Forwards compatibility:
forwards

old version of API compatible 2.0 RIS

2.0 gy 2.0

with new client

3 Versions Rule

Up to 3 versions of an AP Legacy Current Future

. . Client|1.0 2.0 3.0
exist at the same time: |
I 3
= legacy vi.0: migrate old clients T T T
= Current v2.0: normal operation API'|1.0 2.0 3.0

= Future v3.0: develop new experimental
clients

Before v4.0 can be added, vi.0 needs to be retired

uadeH snep)

Compatible Interfaces

= To be connected, component interfaces need to match

perfectly

Adapter

—<o—(@

= Adapters help to connect mismatching interfaces

= Adapters deal with transforming the interaction
provided by one to the interaction required by the
other interface

= Warning: if data or functionality are missing the
adaptation may be impossible

Wrapper

*o—

= The mismatching end of the adapter is hidden inside
a wrapper component

= The adaptation logic is encapsulated within the
wrapper and made reusable

Mismatch Example

id upload(user, image);
image download(id);
setTitle(id, title);
title getTitle(id);

ids[] list(user);

id upload(user, image, title);

{user, title, time} getImageMetaData(id); B

image getImageData(id);

ids[] list();

Are Interfaces A and B equivalent?

26/ 27
References

= William Brown, Raphael Malveau, Hays McCormik Ill, Thomas Mowbray, Anti-Patterns,
Refactoring Software, Architectures, and Projects in Crisis
(http://sourcemaking.com/antipatterns) , Wiley, 1998

= Joshua Bloch, How to Design a Good API and Why it Matters, Google Tech Talk Slides
(http://www.scribd.com/doc/33655/How-to-Design-a-Good-APl-and-Why-it-Matters)

Video (http://video.google.com/videoplay?docid=-3733345136856180693)

= Michi Henning, API: Design Matters, ACM Queue, Vol 5, No 4, May/June 2007

= Will Tracz, Confessions of a Used Program Salesman, Addison-Wesley, 1995

= Jaroslav Tulach, Practical API Design: Confessions of a Java Framework Architect, APress, 2008, ISBN 1-
4302-0973-9

